AFFILIATE RESEARCH

Complex network effects on the robustness of graph convolutional networks

By Tina Eliassi-Rad | February 2024

Vertex classification using graph convolutional networks is susceptible to targeted poisoning attacks, in which both graph structure and node attributes can be changed in an attempt to misclassify a target node. This vulnerability decreases users’ confidence in the learning method and can prevent adoption in high-stakes contexts. Defenses have been proposed, focused on filtering edges before creating the model or aggregating information from neighbors more robustly. This paper considers an alternative: we investigate the ability to exploit network phenomena in the training data selection process to improve classifier robustness. We propose two alternative methods of selecting training data: (1) to select the highest-degree nodes and (2) to select nodes with many connections to the test data. In four real datasets, we show that changing the training set often results in far more perturbations required for a successful attack on the graph structure; often a factor of 2 over the random training baseline. We also run a simulation study in which we demonstrate conditions under which the proposed methods outperform random selection, finding that they improve performance most when homophily is higher, clustering coefficient is higher, node degrees are more homogeneous, and attributes are less informative. In addition, we show that the methods are effective when applied to adaptive attacks, alleviating concerns about generalizability.

 Learn More >>

Other Affiliate Research

A Case Study in an A.I.-Assisted Content Audit

A Case Study in an A.I.-Assisted Content Audit

This paper presents an experimental case study utilizing machine learning and generative AI to audit content diversity in a hyper- local news outlet, The Scope, based at a university and focused on underrepresented communities in Boston. Through computational text analysis, including entity extraction, topic labeling, and quote extraction and attribution, we evaluate the extent to which The Scope’s coverage aligns with its mission to amplify diverse voices.

AI Regulation: Competition, Arbitrage & Regulatory Capture

AI Regulation: Competition, Arbitrage & Regulatory Capture

The commercial launch of ChatGPT in November 2022 and the fast development of Large Language Models catapulted the regulation of Artificial Intelligence to the forefront of policy debates One overlooked area is the political economy of these regulatory initiatives–or how countries and companies can behave strategically and use different regulatory levers to protect their interests in the international competition on how to regulate AI.
This Article helps fill this gap by shedding light on the tradeoffs involved in the design of AI regulatory regimes in a world where: (i) governments compete with other governments to use AI regulation, privacy, and intellectual property regimes to promote their national interests; and (ii) companies behave strategically in this competition, sometimes trying to capture the regulatory framework.

Tags:

Contact Us

Are you interested in joining the IDI team or have a story to tell? reach out to us at j.wihbey@northeastern.edu