AFFILIATE RESEARCH

Journalistic interventions matter: Understanding how Americans perceive fact-checking labels

By Chenyan Jia | April 2024

While algorithms and crowdsourcing have been increasingly used to debunk or label misinformation on social media, such tasks might be most effective when performed by professional fact checkers or journalists. Drawing on a national survey (N = 1,003), we found that U.S. adults evaluated fact-checking labels created by professional fact checkers as more effective than labels by algorithms and other users. News media labels were perceived as more effective than user labels but not statistically different from labels by fact checkers and algorithms. There was no significant difference between labels created by users and algorithms. These findings have implications for platforms and fact-checking practitioners, underscoring the importance of journalistic professionalism in fact-checking.​

 Learn More >>

Other Affiliate Research

A Case Study in an A.I.-Assisted Content Audit

A Case Study in an A.I.-Assisted Content Audit

This paper presents an experimental case study utilizing machine learning and generative AI to audit content diversity in a hyper- local news outlet, The Scope, based at a university and focused on underrepresented communities in Boston. Through computational text analysis, including entity extraction, topic labeling, and quote extraction and attribution, we evaluate the extent to which The Scope’s coverage aligns with its mission to amplify diverse voices.

AI Regulation: Competition, Arbitrage & Regulatory Capture

AI Regulation: Competition, Arbitrage & Regulatory Capture

The commercial launch of ChatGPT in November 2022 and the fast development of Large Language Models catapulted the regulation of Artificial Intelligence to the forefront of policy debates One overlooked area is the political economy of these regulatory initiatives–or how countries and companies can behave strategically and use different regulatory levers to protect their interests in the international competition on how to regulate AI.
This Article helps fill this gap by shedding light on the tradeoffs involved in the design of AI regulatory regimes in a world where: (i) governments compete with other governments to use AI regulation, privacy, and intellectual property regimes to promote their national interests; and (ii) companies behave strategically in this competition, sometimes trying to capture the regulatory framework.

Tags:

Contact Us

Are you interested in joining the IDI team or have a story to tell? reach out to us at j.wihbey@northeastern.edu